

GROUP SET & BINARY OPERATORS -> Closed Propurhies -) Associative -> Identify -> Inverse eg of groups R-7 Real G(2,+)-) Group C - complex G(Z,X) -) Not agooup Q-Rational. R-Integers

-> Only closed & associative
-) Only closed, associative & Identity. L) Monoid
-> only closed -> Magma; eg: wint256, Kecek256 Homomorphism
Homomosphism
-) Homo - Same -) Morp - Shape.
-) There is a homomorphism from A to B where exists a function $\phi: a \rightarrow b$ a EA bEB and $\phi(a, \Phi b) = \phi(a) + \phi(b)$

eg: A: all string under concat R: all non-negative integer under
B: all non-negative integer under addition
$\phi(a \oplus b) = \phi(a) \oplus \phi(b)$
H[w]
$\widehat{A}: G(2, +)$ B: G(b ² , X)

ELLIPTIC CURVES
-) An elliphic curve group is the set of (x, y) points that satisfies the $cq: y^2 = x^3 + b$ -) $(x, y) \oplus (x', y') = (x'', y'')$ closed property
-> If a non-vertical line intersects -> If a non-vertical line intersects 2 points on an elliptic ceave, it will always intersect a third
point) If a line is verhical and) If a line is verhical and orosses 2 points, it will not intersect a third.

-) A elliphic curve group is the Set of (x,y) points that satisfy y2= x3+6 Union Point at Infinity P.O.I is the 3rd intersection of a vertical line. -) The P.O.I is the identify element of the set.

A & B = C B AOC = B BOC - A Contradiction (BOC) (FB = C =) 2B O C = C B D =) B+B+C+B = B + C =) C+B = B +C -) To avoid the $=) C^{-1} + C + B = B^{-1} + C$ contradiction + 2-AOB is mirrored wrt the x-anis) 7 7 B = B

-) The binary operator is to take both points, draw a straight line, determine the third intersection point, then flip over the x-axis. If $P, x = P_2 x$; return T 3P =) 2P(F) 2P = 4P =) 600P => 2P 32P 9P 69P 89 (6 P -9P $= \sum_{i=1}^{k} 1_{i}$ =) (OOP =) 69P+32P 2P)) +4Pworst case 2 log n

2.P P	ON ECCIPTICAL CURVES -) Grivena point Pand a scalar Z, it is easy to compute 2P. But given 2 points P & ZP, its extremely
$y^2 = \chi^3 + 7 \pmod{n}$	difficult to compute 2.
ECDSA -> Privete E -> Public Ke	$ey = \sim 2^{256} \text{ bit scalar}$ $ey = PG(-)(X,Y)$
G is a publicly accepted starting	
point.	C ₁ PG1

-) Eth address = hash (Xpub, Ypub)
Signing with ECDSA
random number K (r,s,v)
=) $R = KG$. =) $R = (K_r, Y_r) \rightarrow X_r \rightarrow Y$
=) $h = hash (msg)$
=) $S = K^{-1}(h + r \times priv)$ C pub, msg, r, s)
Verification R'= S-1 ChG + & Pub) R'= S-1 ChG + VPub)
R'= K (ht &xpriv) (hut to record
$p' = K(N + \partial x p n v)^{-1}(N + \partial x p n v)G_{-}$ $p' = K(G_{-} = J)$

-) Scalar multiplication is associative b(aG) = (ba)G-) Addition is commutative. $aG_{1}+bG_{1}=(a+b)G_{1}$ aG + T = aG $aG_{1} + (-aG_{1}) = \mathbf{T}$ Clarim: [have 2 numbers x & y such that they add up to 15 X = mal (G, 5) Y : mul (67, 10) -) with (X, Y, 15) the verifier Can venify my statement

Venjier=) = mul (G, 15) add (X, Y)== mul (G, at curve order) \neg mul (G_{1}, A) -) neg(mul(G_{1}, α)) = mul(G_{1}, α uve -order - α) MATRIX MULTIPLY $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & 4 \\ b & 4 \end{bmatrix} = \begin{bmatrix} a & 4 \\ 3 & 4 & 4 \end{bmatrix} = \begin{bmatrix} a & 4 \\ 3 & 4 & 4 \end{bmatrix} = \begin{bmatrix} a & 4 \\ 3 & 4 & 4 \end{bmatrix}$ System of equations

$= \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix}$
$= \left(\begin{array}{c} 1 & 2 \\ 3 & q \end{array} \right) \times \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 4 \\ 0 \end{array} \right)$
=) $x + 2y = 9 = aG_{1} + 2bG_{2} = 9G_{1}$ =) $3x + ay = 10^{-2} = 3aG_{1} + 9bG_{2} = 10G_{1}$
-) To prove the solution to asystem of equation, we can provide the values of a f & b G without revealing the solutions a & b.
-) Math ops in finite fields an be done without any precision issues.

-) Precompiles addney (G) addition BN 128 - address (7) multiply BN 128 Add (bool ok, bytes memory result) = address (6). static call (abi.encode (x1, Y1, x2, Y2)); dequire Cole, "add failed"); (X,Y) = abi. decode (result, (cuint 256, uint 256 J);

Point Multiplication $Y^2 = \chi^3 + b$ $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}^2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^2 + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ Y2 == ×2 The set of points $(x_1, y_1) \notin (x_2, y_2)$ is considered one point since il's a $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}^2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^3 + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ solution to

-) There points in the curve form a group -) When you are using a q-D ECC, we call the point $G_2 \rightarrow ((\mathbf{x}_1, \mathbf{k}_1), (\mathbf{y}_1, \mathbf{y}_1))$ $aG_2 + bG_2 = (a+b)G_2$ $a(bG_{1}) = (ab)G_{12}$ -) The above properties hold for 672 -) we want to perform symmetric pairing. aG, bG, = (ab)G, but this is very hard to compute. -) But we can perform asymmetric pairing effeciently. aG_1 , $bG_2 = abG_{12}$

\rightarrow Pairing $(G_{12}, G_{1}) \rightarrow G_{12}$
-) Precompile address (8) performs poiring.
-> In ZKP, we typically book for
Something like, is
AB = CO + EF + GH
where A, C, E, G Can be GI points
& B, D, F, H can be G2 points.
The colidity precompile does not
octumes the Gir point. If only checks
if AB = CD + EF FOLIL NOLOUS-

Adding G12 Points. -> final_exponentiate (AG12 × BG12) -) You can only perform pairing with Gr. & Gr. points. -) if x = 7; how do we compute x^3 $\alpha = \chi^2 =$ pairing (mul (G₂, 7), mul (G₁, 7)) x² : Q X X >) Pairing (mul (G1, 49), mul (G1, 7))

Homework - 4 $D = -A_1B_2 + \alpha_1\beta_2 + \chi_1\beta_2 + C_1S_2$ $X_{,2} \times G_{1} + \chi_{2} G_{2} + \chi_{3} G_{1}$ -(8×4) + 5×2 + 6×3 + 1×4 $x_{1} = 3 (G = 1)$ $x_{2} = 2 (S = 4)$ $x_{3} = 1 (G = 1)$ $A_1 = -8 | \alpha_1 = 5$ $B_2 = 4 | B_2 = 2$ j= 3.

ZK Goo			ove We	Carried	oert
an algo					
eg:1	-?	Sudoki		· · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		2	3	Ŧ	
· · · · · · · · · · · ·	3	4		2	
· · · · · · · · · · · ·	4		2	3	
· · · · · · · · · · · ·	2	s S	· · · · · · · · · · · · · · · · · · ·		
-) Phase L: Solve phase 2: verity solution.					
2k is only concerned with reritying the solution.					

Cg: Sort a list -> Quick sort verify a sorted list -> iterate eg (3): Graph. \rightarrow A MIIII **M** R . (. . . -) Solve if with BFS -) Verify by traversing the path

-) we need to expres these problems is terms of addition & multiplication cuz that's what we can do in 2k. - Three colouring. eg: 4 -) Colour each node of a graph such that none of the neighbouring nodes share the same colocu. -) How to express this graph only in terms of addition & mul hiplication.

 N_2 Ņ, N₃ N¢ N can only be lor 2 or 3 Green = 3 $\overline{E} = (N_{1} - 1) (N_{1} - 2) (N_{1} - 3) = O$ $(N_{2} - 1) (N_{2} - 2) (N_{2} - 3) = O$ $(N_{q}-1)(N_{q}-2)(N_{q}-3)=0$) These equations constrain the nodes from having values other than 1,2023

Nuighbouring seme colour	nodes not sharing the
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni Ny Ny Ny Ny Ny Ny Ny Ny Ny Ny
-) The seme N ₁ N q 1	applies for N2N3, N1N3, Nq N3

-) We have seen how to do 2k System of equations.
-) Given there constrains, if the equations one balanced, then we can prove yo know the solution to system of equas.
x < 16 => Arithmetric Circenits.
$\begin{array}{l} \begin{array}{l} \begin{array}{l} x = 2^{3} b_{3} + 2^{2} b_{2} + 2 b_{1} + b_{0} \\ x = 2^{3} b_{3} + 2^{2} b_{2} + 2 b_{1} + b_{0} \\ (b_{0} - 1) b_{0} = 0 \\ (b_{0} - $

with constrains
$\gamma = 8b_{3} + 4b_{2} + 2b_{1} + b_{0}$
$ \begin{array}{c} (b_{0} - 1) & b_{0} = 0 \\ (b_{0} - 1) & b_{0} = 0 \\ (b_{1} - 1) & b_{1} = 0 \\ (b_{2} - 1) & b_{3} = 0 \\ (b_{3} - 1) & b_{3} = 0 \end{array} $
the x value cannot be greater than
LOGIC GATES ARITHMETIZATION
AND GATE y D-2
$2 = x \cdot y + x(x - 1) = 0$ y(y - 1) = 0
OR GATE $(1) = 2$
z = x + y - xy + y(y - 1) = 0
· · · · · · · · · · · · · · · · · · ·

NOT GATE x (x-1) = <u>- (1-x)</u> XOR GATE .y. x(x-1)=0 $2 = \chi + \gamma - 2\chi \gamma$ 4(4-1) =0 2=(x-y)(x-y) NAND GATE X Þx(x-1) =0 ry y(y-1) = 0

Bitwise AND Z= × & Y	
Step1: Decompose the nums to bits.	x = 0010 y = 1011 2 = 0010
$\chi = 8b_3 + 4b_2 + 2b_1 + b_0$	$b_{0}(b_{0}-i) = 0$ $b_{0}(b_{0}-i) = 0$
$y = 8C_3 f q C_2 + 2C_1 + C_0$	$\left \begin{array}{c} C_{n}(C_{n}-1) > 0 \\ C_{n}(C_{n}-1) > 0 \end{array} \right $
	$d_0(d_0-1) = 0$ $d_n(d_n-1) = 0$
$(b_{3}, -d_{3})(b_{2}, -d_{2})(b_{1}, -d_{2})$	d.) (bo(o - do) = 0

Homework - 5
Q1. K, to Xn such that at least one signal is D.
$\chi_1, \chi_2, \chi_3, \chi_q$
Q2. X, to Xn such that all signals are 1
$\chi_1, \chi_2, \chi_3, \chi_q, \ldots, \chi_n - 1 = 0$
Q3 Bipartete Greph.
$N_{2} = N_{1} (N_{1} - 1) = 0$
$N_{1}(N_{1}-1) = 0$ $N_{1}(N_{1}-1) = 0$ $N_{2}(N_{2}-1) = 0$ $N_{3}(N_{3}-1) = 0$
$N_q \qquad \qquad N_1 \qquad N_2 \qquad \qquad N_1 \qquad N_2 \qquad \qquad N_1 \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_2 \qquad \qquad N_1 \qquad \qquad N_2 \qquad \qquad N_1 $
$\begin{array}{c c} 1 & 2 \\ 2 & 1 \\ 2 & 2 \end{array}$

$(N_1N_2 - 2) = O(N_3N_q - 2) = O$ $(N_2N_3 - 2) = O \cdots (N_qN_5 - 2) = D$
Qq) $K = max(x, y, z)$ Y = max(x, y) $k = nbitsY = nbitsf = nbits$
$max(x,y) = 2^{n-1} + (x-y) = 1; then$ $= 2^{n}b_{n} + 2^{n-1}b_{n-1} = 1; then$ If the MSB of $2^{n-1} + (x-y) = 1; then$
If the MISD $g = 0$; then $y > x$ $x \ge y$. If MSB = 0; then $y > x$ $V \ge b_n x + ((-b_n))y$
$V = max(x,y) = b_n x + (1-b_n)y$

K = max (v, 2)
Q5) Gignels X,, X2 Xn such that at least one of the signal is 2.
$(1-\chi_1)(1-\chi_2)(1-\chi_3)\dots(1-\chi_n)=0$
Q6) Signal V such that V is a power
of 2. $v = 2^{h}b_{n} + 2^{h-1}b_{n-1} + 2^{h-2}b_{n-2} + b_{n}$
$b_n + b_{n-1} + b_{n-2} + \dots + b_0 - 1 = 0$ $b_n (b_{n-1}) = 0$
$b_{o}(b_{0}-1)=0$

frithmetization of the covering problem.
$S = \{1, 2, 3, 4, \dots, 10\}$
subsets = $\{0, 0, 1, 1, 0\}$
wise OR of embedded subset $S_{1} = \{a_{1}, a_{2}, a_{3}, \dots, a_{n}\},$ $S_{1} = \{a_{1}, a_{2}, a_{3}, \dots, a_{n}\},$ $S_{1} = \{b_{1}, b_{2}, b_{3}, \dots, b_{n}\},$ $S_{1} = \{b_{1}, b_{2}, b_{3}, \dots, b_{n}\},$ $S_{1} = \{b_{1}, b_{2}, b_{3}, \dots, b_{n}\},$ $S_{2} = \{b_{1}, b_{2}, b_{3}, \dots, b_{n}\},$ $\{b_{1}, b_{2}, b_{3}, \dots, b_{n}\},$ $\{c_{1}, c_{2}, c_{2}, c_{2}, \dots, c_{n}\},$ $S_{2} = \{c_{1}, c_{2}, c_{2}, c_{2}, \dots, c_{n}\},$ $S_{2} = \{c_{1}, c_{2}, c_{2}, c_{2}, \dots, c_{n}\},$ $S_{n} = \{c_{1}, c_{2}, c_{2}, \dots, c_{n}\},$ $S_{n} = \{c_{1}, c_{2}, c_{2}, \dots, c_{n}\},$ $S_{n} = \{c_{1}, \dots, c_{n}\},$

RANK-1 CONSTRAIN SYSTEM
ARITHMETIC CIRCUITS
$(\chi_{1}-1)(\chi_{1}-2)(\chi_{1}-3)=0$ $(\chi_{2}-1)(\chi_{2}-2)(\chi_{2}-3)=0$
$(\chi_{3}-1)(\chi_{3}-2)(\chi_{3}-3)=0$
$(\chi, \chi_2 - 2) (\chi, \chi_2 - 3) (\chi, \chi_2 - 6) = 0$ $(\chi_1 \chi_3 - 2) (\chi_1 \chi_3 - 3) (\chi_2 \chi_3 - 6) = 0$
$(\chi_{1}\chi_{3}-2)(\chi_{1}\chi_{3}-3)(\chi_{1}\chi_{3}-6)=0$
-> 12 the x, x2 & x3 are G1 points then
we can't perform multiplication of G1 points. RLCS is used to fix this.

System of eqn
$\chi.\gamma = Z+b+5\chi$
L' Quadratic Constrain
How to do 242 = V with elliphical cueves??
$\chi \gamma z = V$ $\omega = \chi \gamma$ $v = \omega z$
$\begin{array}{c} e_{g}: \chi_{1}\chi_{2}\chi_{3} + \chi_{2}\chi_{q} + \chi_{s} \\ = 5\chi_{1} + 6 - \chi_{3}\chi_{q}\chi_{1} \end{array}$
$2\chi_{3}\chi_{q}+3=4\chi_{2}$
$V_1 = \chi_1 \chi_2 \qquad V_3 = \chi^3$ $V_2 = \chi_2 \chi_4 \qquad V_4 = \chi_3 \chi_4$
$= \sum V_1 K_3 + V_2 + V_3 = 5K_1 + 6 - V_4 K_1$ $2 V_4 + 3 = 4K_2^2$

	$V_5 = V_1 \kappa_s$			
=) V	5 + ^V 2 + ^V 3	5 %, + €	, - N ₄ x ₁	
	2 Vg +	$3 = 4 \chi_2^2$		
	V 2 V 3 V 3	$= \chi_{1} \chi_{2}$ $= \chi_{2} \chi_{4}$ $= \chi_{3}^{2}$ $q = \chi_{3} \chi_{4}$ $I_{5} = V_{1} \chi_{3}$	PACS Circuits	
V5 + V2	$+V_3 - 5X_1 -$	$6 = - v_4 x$		
V54V2	2 + V3 - 5x, - 2Vq	$6 = -V_{4}x$ + 3 = $Fx_{2}x_{3}$	×2_	
V54V2	2 + V3 - 5x, - 2Vq	$6 = - v_4 x$	×2_	
V 5 4 V 2	2 + V3 - 5x, - 2Vq	$6 = -V_{4}x$ + 3 = $Fx_{2}x_{3}$	×2_	
	2 + V3 - 5x, - 2Vq	$6 = - V_{4} x$ + 3 = qx_2 s convert the	Kz s to matrix	
	$2 + V_3 - 5X_1 - 2V_4$	$6 = - V_{4} x$ + 3 = qx_2 s convert the	Kz s to matrix	
	$2 + V_3 - 5X_1 - 2V_4$	$6 = - v_{4} x$ $+ 3 = q x_{2} x$ $= \int convert f dw$	kz 5 to matrik	

=> 2 Nq + 3 =	$=4\chi_2^2$
$\sqrt[4]{2} = 1$	x 2 1 12CS
	x 3 x q Circuits = V1 x
$V_5 + V_2 + V_3 - 5x_1 - 6$	
2Vq +3	$= q \chi_2 \chi_2$
	onvert this to matrix
$\frac{1}{0} \frac{1}{0} \frac{1}$	
000000000000000000000000000000000000000	X, V2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\chi_{3} = \chi_{4}$
0000000	Xq NG
300000020	$\frac{v_1}{v_2}$
	v_{g} $2v_{q} \neq 3$ v_{q}

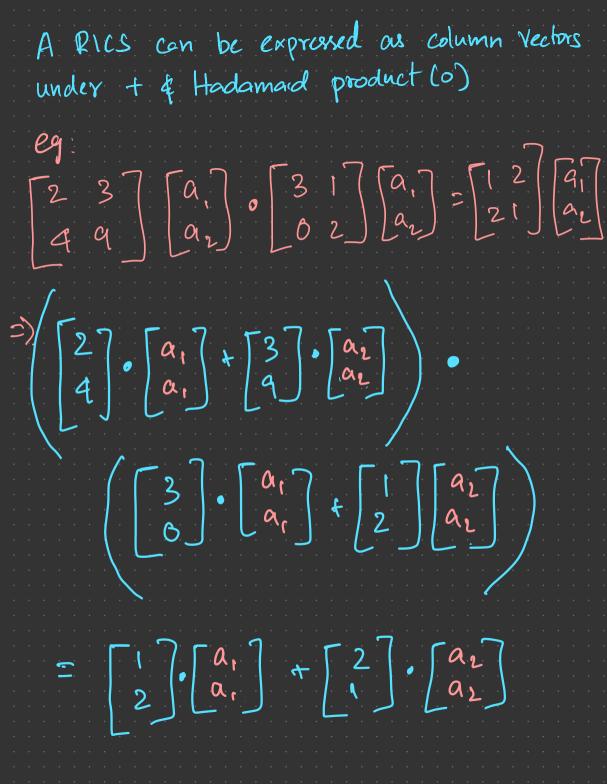
Ls Rs = Os 2) -> S is the witness vector. -) we take the Hadamard product of CS \$PS Cg: 2 X, X2 X3 5 X4 House mard product is element wise multiplication 6x2+x1x3=x5+1 eg. $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \end{bmatrix}$ $\mathcal{X}, \mathcal{K}_2 = \mathcal{V},$ V, NZ = Xq x, x3 = x5 + 1 - 6x2 1 K, K2 K3 X4 K5 V, 1 K, K2 K3 X4 K5 V, K^t 0010000 0001000 К, 0100006 X2 x2 000000 X 3 K3 0001000 0001000 KA Xq SK5 SL5 V 1 K, K2 K3 X4 K5 V, K^c 000000 x 00000000 Nz 10-60010 Xq \$L5

Homework Q1. Graph with 3 nodes & 3 adges Constrains (x-1) (x-2) (x-3) = 0 (Y - 1)(Y - 2)(Y - 3) = 0XY (2-1)(2-2)(2-3)=012 2 3 (xy -2)(xy -3)(xy -6)=0 2 2 12 (42 - 2) [42 - 3] [42 - 6] = 018 23 6 (x2-2) (x2-3) (y2-6) =0 3 3 6 33 9

$\Rightarrow \chi^{3} - 6\chi^{2} + 11\chi - 6 = 0$ $y^{3} - 6y^{2} + 11\chi - 6 = 0$ $y^{3} - 6y^{2} + 11\chi - 6 = 0$ $y^{3} - 6z^{2} + 11z - 6 = 0$ $\chi^{3}y^{3} - 11\chi^{2}y^{2} + 42yy - 36 = 0$ $y^{3}z^{3} - 11y^{2}z^{2} + 42yz - 36 = 0$ $z^{3}x^{3} - 11z^{2}x^{2} + 42zz - 36 = 0$	$z^{2} = V_{1}$ $y^{2} = V_{2}$ $z^{2} = N_{3}$ $v_{1}v_{2} = V_{4} = x^{2}y^{2}$ $v_{2}v_{3} = v_{5} = y^{2}y^{2}$ $v_{3}v_{1} = V_{6} = y^{2}y^{2}$ $v_{4}y = V_{7}$ $v_{3}y = V_{7}$ $v_{3}y = V_{7}$
$= \sum V_{1} K - 6V_{1} + 11 K - 6 = 0$ $V_{2}Y - 6V_{2} + 11 Y - 6 = 0$ $V_{3}Z - 6V_{3} + 11 Z - 6 = 0$ $V_{3}Z - 6V_{3} + 11 Z - 6 = 0$ $V_{4}V_{7} - 11 V_{4} + 36 V_{7} - 36 = 0$ $V_{5}V_{8} - 11 V_{5} + 36 V_{8} - 36 = 0$ $V_{6}V_{9} - 11 V_{6} + 36 V_{9} - 36 = 0$	32 = ^N 9

· · · · · · · · · · · · · · · · · · ·
$\mathcal{I}^{2} = \mathcal{V}_{1}$
$N^2 = M_{-}$
$\gamma^{\prime} = N_{2}$
$z^{2} = N_{3}$
. 6
$V_1 V_2 = V_q$
. ! . 4
$V_2 V_1 \approx V_6$
$xy = y_{2}$
$\gamma_{3} = \gamma_{3}$
$2\chi = Vq$
· 2 1/2 · ¹ /2 · 1/9 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·
· O · · · · · · · · · · · · · · · · · ·
$V_{1} \mathcal{X} = 6 V_{1} - 11 \mathcal{X} + 6$
$v_2 Y = 6v_2 - 11Y + 6$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
$v_{23} = 6v_3 - 113 + 6$
$V_{4}V_{7} = 11V_{4} = 36V_{7} + 36$ $V_{6}V_{7} = 36V_{7} + 36$
Val - IIVa
gra acut AZL
$V_{5}V_{8} = 11V_{5} - 36V_{8} + 36$ $V_{5}V_{8} = 26V_{6} + 36$
5°
$111 26V_0 + 36$
$V_{6}V_{q} = 11V_{6} - 36V_{q} + 36$

1 n 4 3 v, V, V, V, V, V, V, V, V, 0100000000000 001000000000000 001000000000 3 O \bigcirc 000010000 000 O 0 0 0 0 0 0 00000 O 000000000 0 \bigcirc \bigcirc 00000000000 \mathcal{O} \mathcal{O} \ 0000000 00 O 00 VS 00010000000 \mathcal{O} 0000000000000000 \bigcirc V2 00000100000 0 0000100000 V¢ O \bigcirc \bigcirc 000000000000 NG \bigcirc 01000-0000000 \bigcirc n y 3 v, 0100000000000 00100000000000 00010000000000 6 M 0000000000000000 N2 0100000000 000 ٧L 00000000000 \bigcirc 0 Ng 0000000 \bigcirc 10 OO \bigcirc 000000000000 US \bigcirc 0000 00 000 0 \mathcal{O} \mathcal{O} V6 0000000 000 \mathcal{O} C V2 000000000 0 \bigcirc 01 \bigcirc 000100 Ng 00 OO \mathcal{O} \mathcal{O} \mathcal{O} 0000000000000000 \mathcal{O} \mathcal{O} 0000000000 3 \sim


Y 3 V, V2 V3 V4 V5 V6 V7 V9 V9 00001000000000 X 00000000000000 0000001000000 3 000000000000000 V. 000000000000000 N2 0°00°0°0°0°0°0°1°0°0 ٧Ļ \bigcirc 0000000000000000 \bigcirc Vq 0 VS V6 6-1100600000000 V2 Ng 360000001100-3600 NG 360000000100-360 .36000000000¹¹00-**36** 2 miltiplication Q4) why only in RICS? We can only perform bilinear pairing with a GI & GZ points. Therefore we cen only perform it once

Quadrachic Arithmetic Program
-> RICS is not succinct. -> we need n-rows to check equality
$RICS \rightarrow QAP$
-> So we turn the RICS form to a polynomial form.
Schwattz - Zippel Lemma
-> two polynomial intersects at most
d points where d is the degree of the
Schwarrs - Zipper un -> two polynomial intersects at most d points where d is the degree of the larger polynomial.

Verity if $P(x) = q(x)$		
VERIFIER PROVER.		
< Polynomial P(Z)		
$\mathcal{C}ommitment$ $q(2)$		
T random > Point T?		
Evaluate PCT) PCT)		
$4 \alpha(T)$ P(C)		
· · · · · · · · · · · · · · · · · · ·		
Evaluation.		
-> The prover first commits the		
polynomial.		
-) The renfier gives a contactor point		
\sim L Ω_{0}		
-> The prover evaluates P(I) & q(I) -> The prover evaluates P(I) & q(I) them to the verifier along		
and returns in		
with the proof (T).		

\rightarrow (f P(Z) = q(Z) then P(x) = q(x) \rightarrow This is due to schwattz - 2ippel lemma.
-> If the degree of polynomial is 3 then both the polynomials will intersect at most
3 points. \rightarrow In a 256-bit field the probability of choosing a 2 where $p(t) = q(t)$ but $p(x) \neq q(x)$ is $3/2^{256}$.
PING -> Ring is a set with two binary operators + & X under +: abelien group Cgroup + distributive) under x: monoid (no inverse)
Zunder + & x is a ring.

Polynomials under + & x are rings Under X Under t -) closed -> Closed -) Associative) associative -> (dentity CI) -> (dentify (o) -> inverse (-polynomial) -> clistributive Column Vectors under + & Hadamard product are sings It's a monorid because the inverse does not easist for every element. $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \\ 1/2 \end{bmatrix}$

=) Column Vectors & polynomials are rings. =) There exists a homomorphism blue them: CV => polynomial.	
=) A polynomial can be thought of as a vector with all the points that satisfy the equation. $eq: 2x^2 - 3x + 5 =)$ $\begin{bmatrix} -1 & 10 \\ 0 & 5 \\ 1 & 4 \\ 2 & 7 \\ \vdots & . \end{bmatrix}$	
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 3 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 3 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 3 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 3 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 3 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ \end{cases} $\begin{cases} 1 \\ 4 \end{bmatrix}$ $\begin{cases} 1 \\ 4 \end{bmatrix}$ \end{cases} \end{cases} $\begin{cases} 1 \\ 4 \end{bmatrix}$ \end{cases} \end{cases} \end{cases} $\begin{cases} 1 \\ 4 \end{bmatrix}$ \end{cases}	

=) $\begin{bmatrix} 2\\ 3 \end{bmatrix}$ can be written as a polynomial $f(x) = \chi$.
=) []] Can be written us a polynomial $f(x) = 1$
$\Rightarrow x + i = \begin{bmatrix} 2 \\ 3 \\ -q \end{bmatrix} = f(x) = x + i$
=) Use Lagrange Interpolation to convert points to polynomial.
=) given a set of (x, y) pairs Lagrange interpolation will return the lowest degree polynomial that passes through those points.
=) we then column vectors to polynomials using lagrange interpolation. This makes it succinct.

Multiplication of Column Vectors
$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} \begin{bmatrix} 2 $
=) The degrees on LHS & RHS is not balanced. (LHS -) degree 2; RHS-) degree 1) >) So we need to add a degree 2 polynomial to RHS to balance the equation.
$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} + P_2$ =) Polynomial P2 should have degree 2 and be equal to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

=) if we have 2 polynomials P, & P2 with roots forg & frzy then P, XP2 will have the roots fr, gufr2g. $eq: P_1 = (x-3)(x+5) => 3, -5$ $P_2 = (2x+1)(3x) = -\frac{1}{2},0$ $P_1 P_2 = (n-3)(n+5)(2n+1)(3n)$ => 3,-5,-1/2,0 P. P2 = P3 · b J-) babacing polynomial $P_1 \cdot P_2 = P_3 \cdot t \cdot h$ $(\kappa - i) (\kappa - 2) = [0]$ h =) is this case $P_1 \cdot P_2 - P_3$ h's degree is O.

$\begin{bmatrix} 2\\ 4 \end{bmatrix} \cdot \begin{bmatrix} a\\ a \end{bmatrix}$	$+ \begin{bmatrix} 3 \\ a \end{bmatrix} \cdot \begin{bmatrix} a \\ a 2 \end{bmatrix}$	$\left(\begin{bmatrix} z \\ z \end{bmatrix}, \begin{bmatrix} a \\ a \end{bmatrix}\right)$	$ \int_{4} \left[\frac{1}{2} \right] \left[\frac{92}{a_{1}} \right] $
	ψ. u _r		$\frac{\sqrt{2}}{1} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} a_2 \\ a_2 \end{bmatrix}$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Cw ₁	
· · · · · · · · · · · ·			a;w;(x) + h(x) • t(x) 1
=) This	is how 21	K-SNARKS	are succinct.
=) check	if the LH Htg-zippe	s = RHS W	n' <i>v</i> g
· Einer	ttz - 21 ppe ything is d being the c	one is a fi	M 1 - 0

Homecoork -7 QAP Q2. 1003000 Out 000010 001000 $=) \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ x \\ x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{1} \\ v_{1} \end{bmatrix}$ =) $\chi(3a^2 - 12a + 12) + V_1(-1a^2 + 4a - 3)$

 $= \left(\begin{array}{c} 1 \\ 0 \\ 6 \end{array} \right) \cdot \left(\begin{array}{c} 1 \\ k \\ k \end{array} \right) + \left(\begin{array}{c} 0 \\ 1 \\ 5 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 5 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 5 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$ =) $N\left(\frac{1}{2}a^2 \cdot \frac{5}{2}a + 3\right) + Y\left(\frac{3}{2}a^2 - \frac{4}{2}a + 2\right)$

 $+ \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$ $=) 1 \left(\frac{-3}{2}a^{2} + \frac{9}{5}a - 3 \right) + 0ut \left(\frac{1}{2}a^{2} - \frac{3}{2}a + 1 \right)$ $+ \chi (\frac{1}{2}a^{2} - \frac{3}{2}a + 1) + \chi (1a^{2} - 3a + 2)$ + $V_1 \left(\frac{1}{2} a^2 - \frac{3}{5} a + 3 \right) + V_2 \left(-\frac{1}{2} a^2 + \frac{3}{2} a - 1a \right)$ + h(a) t(a)

 $h(a) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = (a - i)(a - 2)(a - 3)$ =) $(3a^2k - 12ak + 12k - 1a^2v_1 + 4av_1 - 3v_1)x$ (1a²x - 5ax +3x + 3a²y - 7ay + 2y) $-\left(\frac{1}{2}a^{2}x - \frac{3}{2}ax + x\right) - \left(1a^{2}y - \frac{3}{2}ay + 2y\right)$ $-(\frac{1}{2}a^{2}v_{1}-\frac{3}{5}av_{1}+3v_{1})$ =) $\frac{3}{2}a^{4}x^{2} - \frac{15}{2}a^{3}x^{2} + 9a^{2}x^{2} + \frac{9}{2}a_{ny} - \frac{21}{2}a_{ny}^{3}$ $+ 6 q^2 ny - 6 q^3 n^2 + 30 q^2 n^2 - 36 q^2 n^2$ 18 g rug + 42 g ny - 24 g ny + 6 a n' 30 a x 2 + 36 n 2 + 18 a 2 ny - 42 a ny $+212y - \frac{a^{2}v_{1}}{2} + \frac{5}{2}a^{3}xv_{1} - 3a^{2}xv_{1} - \frac{3}{2}a^{4}v_{1}y_{1}$ + 7 a³v1y - 2a²v, y + 2 a³xv1 - 10a²v1x + 12 axv, +6 a³v,y -)4 a²v,y + 8 av,y

=) $(3a^2k - 12ak + 12k - 1a^2v_1 + 4av_1 - 3v_1)x$ (1a2x - 5ax +3x + 3a2y - 7ay +2y) 6 yv,

Polynomiale on Elliptic Curve.
$f(x) = x_5 + x_7 + 5$
=) How to evaluate this if x is a point
on a elliptic cueve?
\Rightarrow f(3G ₁) = ?
=) This is a polynomial commitment
$f(x) = 2x^{3} + 3x^{2} + 7x + 12$ inner product = 2x^{3} + 3x^{2} + 7x' + 12x 9
$= \langle [2, 3, 7, 12], [x^3, x^2, x, 1] \rangle$
$= \left\{ \begin{bmatrix} 2, 3, 7, 12 \end{bmatrix}, \begin{bmatrix} \chi^{2}G_{1}, \chi^{2}G_{1}, \chi G_{1} \end{bmatrix} \right\}$
$f(r) G_1 = 2 x^3 G_1 + 3 x^2 G_1 + 7 x G_1 + 12 G_1$
=> You can evaluate a polynomial without
Enowing the imput.
· · · · · · · · · · · · · · · · · · ·

 $\left[\chi^{2}G_{1},\chi^{2}G_{1},\chi G_{1},\zeta_{1}\right]$ -> Structured Reference String -> Groth-16 -> trusted setup. Trusted Setup Veetor $, t^{3}G_{1}, t^{2}G_{1}, tG_{1}, H_{1}$ L) powers of Tau. =) I is a toxic waste. It needs to be discarded. =) If the prover knows i, then they can create equations that satisfy at I.

 $\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} u_{i}(x) = \sum_{i=1}^{m} a_{i} w_{i}(x) + h(x) \cdot t(x)$ $\sum_{i=1}^{m} a_{i} u_{i}(x) = \sum_{i=1}^{m} a_{i} w_{i}(x) + h(x) \cdot t(x)$ $[\mathcal{L}^{2}G_{1}, \mathcal{L}G_{1}, G_{2}, [\mathcal{L}^{2}G_{2}, \mathcal{L}G_{2}, G_{2}],$ $\frac{R(C)}{form} \left[\left[T + (T) G_{1}, + (T) G_{1} \right] \right]$ a [$(u, (\tau)$] a [$u, (\tau)$] a [$u, (\tau)$] a [$u, (\tau)$] a [$u_2(\tau)$ a [$u_2(\tau)$ a [$u_2(\tau)$] a [$u_2(\tau)$ a [$u_2(\tau)$ a [$u_2(\tau)$] a [$u_2(\tau)$ \Rightarrow [A], \cdot [B]₂ = [C], \cdot G₂ =) We still have to solve for h(x) t(x)

h(x) t(x) at x = t =) $t(x) = (x - 1) (x - 2) (x - 3)$ = $x^{3} - 6x^{2} + 11x - 6$
$h(\mathbf{x}) = 2\mathbf{x} + 1$
$h(x) t(x) = (2x+1)(x^3 - 6x^2 + 11x - 6)$
=) Since t(x) is known before hand, the frusted setup can include [-t(t)Gi,]
\Rightarrow $h(x) t(x) = (2x + 1) (t(t) - 0,)$
=) This multiplication can be rewritten to a inner product. $eq: (2x+1)(6) = \langle [2,1], [x6,6] \rangle$
$\implies h(x) + (x) = \langle [2, 1], [7+(t)] \rangle$ at $x = T$

=) [B] ₂ = = [c] ₁ =	$= a_{1} \left[v_{1} (t) \right]_{2} + a_{2} \left[v_{2} (t) \right]_{2} + a_{2} \left[w_{2} (t) \right]_{1} + a_{2} \left[w_{2} (t) \right]_{1} + a_{2} \left[w_{2} (t) \right]_{1} + a_{2} \left[w_{2} (t) \right]_{2} + a_{2} \left[w_{2} (t) \right]_{1} $	$[u_{2}(t)]_{1} + a_{3}[u_{3}(t)]_{1}$ $v_{2}(t)]_{2} + a_{3}[v_{3}(t)]_{2}$ $(t)]_{1} + a_{3}[w_{3}(t)]_{1}$ + h(t) + (t)
		succinct with point A,, B ₂ , ^{C1}

GIROTHIG
=> The prover can currently send any [A],,
[B] & [c], points to the verifier.
=> If we add a Giz point with unknown discrete logarithm to [A]. [B]. = [C]. Giz then it will be impossible to fudge the
$\begin{bmatrix} A \end{bmatrix}_{2} \begin{bmatrix} B \end{bmatrix}_{2} = \begin{bmatrix} X \end{bmatrix}_{2} \begin{bmatrix} B \end{bmatrix}_{2} + \begin{bmatrix} C \end{bmatrix}_{1} \end{bmatrix}_{2}$
[x], [B], are generated during trusted setup. X & B are destroyed.

$\sum_{i=1}^{m} a_i u_i(x) = \sum_{i=1}^{m} a_i w_i(x) + h(x) t(x)$
$[f_{i}, \phi] \rightarrow$ Random points
$\left(\sum_{i=1}^{m} a_i u_i(x) + l_i\right) \left(\sum_{i=1}^{m} a_i v_i(x) + \varphi\right)$
$=\sum_{i=1}^{m} a_i u_i(x) \underset{i=1}{\overset{m}{\underset{m}{\underset{i=1}{\overset{m}{\underset{m}{\underset{i=1}{\overset{m}{\underset{m}{\underset{m}{\underset{m}{\underset{m}{\underset{m}{\underset{m}{\atopm}{\underset{m}{$
$+ \phi \sum_{i=1}^{m} a; u; ir) + G \phi$
$\sum_{i=1}^{m} a_i u_i(x) \sum_{i=1}^{m} a_i u_i(x) = \sum_{i=1}^{m} a_i u_i(x) + h(x) t(x)$
$=) \underset{i=1}{\overset{m}{\succeq}} a_{i}w_{i}(x) + h(x)t(x) + \underset{i=1}{\overset{m}{\leftarrow}} a_{i}v_{i}(x)$
$+ \varphi \sum_{i=1}^{\infty} \alpha_i \alpha_i (1) + 4 \varphi$
$\sum_{i=1}^{m} f(\alpha) + \sum_{i=1}^{m} g(\alpha) = \sum_{i=1}^{m} f(\alpha) + g(\alpha)$

 $=) \stackrel{m}{\Sigma} (a_i w_i(x) + \{a_i v_i(x) + \phi a_i u_i(x)\})$ + q + h(x)t(x)[A]. $\Rightarrow \left(\sum_{i=1}^{m} a_i u_i(u) + l_i \right) \left(\sum_{i=1}^{m} a_i v_i(u) + l_i \right)$ $= \sum_{i=1}^{m} (a_i w_i(x) + \{a_i v_i(x) + \phi a_i u_i(x)\} + \{e\phi\}$ [C] \Rightarrow [A], .[B]₂ = [C], G₂ + [K], [B]₂

$\sum_{i=1}^{m} (a_i w_i(x) + \{a_i v_i(x) + \phi a_i u_i(x))$
$= \sum_{i=1}^{m} \alpha_i \left(w_i(x) + \xi_{v_i(x)} + \varphi_{u_i(x)} \right)$
$\Psi_i = (\omega_i(x) + \mathcal{L}\nu_i(x) + \varphi u_i(x))G_{i_i}$
$\begin{bmatrix} & & & \\ $
=> Ψ_n is generated during trusted setup. => $[C]_1 = \sum_{i=0}^{m} a_i \Psi_i$
$ = \left(\begin{array}{c} m \\ \sum a_{i}u_{i}(x) + \alpha \\ i = 0 \end{array} \right) \left(\begin{array}{c} m \\ \sum a_{i}v_{i}(x) + \beta \\ i = 0 \end{array} \right) \\ = \begin{array}{c} m \\ \sum a_{i} & \psi_{i} + \alpha \beta \\ i = 0 \end{array} \right) $

=> So far we have acheived zero knowledgeness,
succinctness, non-interactivity, & argument of
knowledge.
=) But our SNARK does not have the
the ability to hold public signals that the
verifier can see.
=> All inputs are Elliptic curve points.
$\sum_{i=1}^{m} a_i u_i(x) \cdot \sum_{i=1}^{m} a_i u_i(x) + h(x) \cdot t(x)$
$ = \sum_{i=1}^{m} a_i w_i(x) = \sum_{i=1}^{k} a_i w_i(x) + \sum_{i=1}^{m} a_i w_i(x) $
we can make the a; values here public.

$\sum_{i=1}^{m} a_i w_i(x) = \sum_{i=1}^{m} a_i \psi_i$
$\Rightarrow a, \psi, + a_2 \psi_2 + a_3 \psi_3 \dots a_m \psi_m$
[] l = 2, ie; the public signals are 2
$\Rightarrow a, \psi, + a_2 \psi_2 + a_3 \psi_3 \dots a_m \psi_m$ $\downarrow \qquad \qquad$
Verification $A \cdot B \stackrel{?}{=} [w], [B]_{2} + C \cdot G_{2} + X \cdot G_{2}$ $\int \int $

$\Rightarrow a_{1} \psi_{1} + a_{2} \psi_{2} + a_{3} \psi_{3} + a_{4} \psi_{4} + a_{5} \psi_{5}$
-> The prover might provide an invalid witness paired with a verification key 4 that may produce a valid proof depending on the problem.
-> we introdue 2 wiknown points [8], \$ [8], that are generated during the Erusted setup process.
$A \cdot B = [X], [B]_2 + C[S]_2 + X[S]_2$

\rightarrow On computing Ψ_i during trusted setup we divide Ψ_i with S or S.
$\Psi_i = \frac{x v_i(z) + \beta u_i(z) + w_i(z)}{g}$ if $i \le l$
$\Psi_{i} = \frac{\alpha v_{i}(z) + \beta u_{i}(z) + w_{i}(z)}{\beta}$ if $i > l$
-> To prement affacters from guessing one witness (its possible when the witnes options
-> To prevent attackers from guessing one witness (its possible when the witness options are less), we add a random salt to
witness (its possible when the witness opinions are less), we add a random salt to
-> To prevent affackers from guessing one witness (its possible when the witness options are less), we add a random salt to [A] [B] \$ [C]
witness (its possible when the witness options are less), we add a random salt to [A] [B] \$ [C]
witness (its possible when the witness options are less), we add a random salt to [A] [B] \$ [C]
witness (its possible when the witness options are less), we add a random salt to [A] [B] \$ [C]

 $[A]_{1} = [\alpha]_{1} + \sum_{i=1}^{m} a_{i}u_{i}(\tau) + \eta[S]_{1}$ $[B]_2 = [B]_2 + \sum_{i=1}^{m} a_i v_i (t) + s[S]_2$ $[B]_{i} = [B]_{i} + \sum_{i=1}^{m} a_{i}v_{i}(t) + S[S]_{i}$ $\begin{bmatrix} C \end{bmatrix}_{i=0}^{m} \underset{i=0}{\overset{m}{\geq}} a_{i} \begin{bmatrix} B u_{i}(t) + \alpha v_{i}(t) + w_{i}(t) \end{bmatrix}_{i=0}^{m}$ + S[A], + r[B], - rs[8], $proof = ([A], [B]_2, [c],)$

Summary			
Stepi: Write agiren			
set of constrained addition & multipli		with Only	
Step 2:	at of Con	strained equal	ong
Convert the s		••••••••••••••••••••••••••••••••••••••	
Step 2. Convert the S to RICS form (matr muly have a maximu	nix) such	that you	
to RICS form (matri Only have a maximu in the equations. If	nix) such nm of 1	that you multiplication	
L RICS form (mati	nix) such nm of 1	that you multiplication	
to RICS form (matri only have a maximu in the equations. If substitution.	rix) such run of 1 i done f	that you multiplication wough	
to RICS form (matri only have a maximu in the equations. If substitution.	rix) such run of 1 i done f	that you multiplication wough	

Step 3: Convert the RICS form to a QAP (polynomial) form.
Step4: Evaluate the resulting QAP at C. which is provided by the trusted setup.
SEEp 5:
Setup proof and verification based on the algorithm. ic; groth 16, plonky, cfc.
C.L.n and remitiration based
C.L.n and remitiration based
C.L.n and remitiration based
Setup proof and verification based on the algorithm. ie; groth 16, plonky, etc.
Setup proof and verification based on the algorithm. ie; groth 16, plonky, etc.
Setup proof and verification based on the algorithm. ie; groth 16, plonky, etc.
Setup proof and verification based on the algorithm. ie; groth 16, plonky, etc.
Setup proof and verification based on the algorithm. ie; groth 16, planky, etc.